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SUMMARY

Thermal buoyant air inside a modified Rayleigh–Bénard (RB) cavity bounded by a lower flat plate and
an inverted-V upper plate has been investigated numerically using the finite-volume method. The second-
order-accurate QUICK and SIMPLE schemes were used for the discretization of the convective terms
and the pressure–velocity coupling in the set of conservation equations, respectively. The problem under
study is controlled by two parameters: (1) the Rayleigh number ranging from 103 to 106 and (2) the
relative height of the vertical sidewalls d . In reference to the latter, it varies from one limiting case
corresponding to the standard RB cavity (a rectangle with d = 1) to another limiting case represented by
an isosceles triangular cavity where d = 0. The numerical results for the velocity and temperature fields
are presented in terms of streamlines, isotherms, local and mean heat fluxes. An additional effort was
devoted to determine the critical Ra values characterizing the transition from symmetrical to asymmetrical
buoyant airflow responsive to incremental changes in Ra. For purposes of engineering design, a general
correlation equation for the Nusselt number in terms of the pertinent Ra and d was constructed using
nonlinear multiple regression theory. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The standard Rayleigh–Bénard cavity (hereafter the RB cavity) is considered as a classic problem
in fluid mechanics and thermal convection [1, 2]. A standard RB cavity is defined as an enclosed
space long and wide in the horizontal direction which is bounded by two large horizontal plates
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held at uniform temperatures, the lower plate being at a temperature TH higher than the upper plate
at a temperature TC. The fluid medium is normally a single-phase Newtonian liquid or a pure gas.

The physics of fluids stipulates that the heat transport by natural convection in a RB cavity is
conformed by two modes [1, 2]. The first mode is prototypical of molecular conduction of heat
in the quiescent fluid layer that separates the two opposing horizontal plates. In this mode, the
buoyant forces are weak and cannot overcome the viscous forces creating an imbalance of forces.
Consequently, the molecular conduction mode is described by a linear temperature variation so that
the transfer of heat across the quiescent fluid layer is portrayed by a unitary Nusselt number, Nu= 1.
This plain pattern remains unaltered as Ra increases up to the attainment of a critical Rayleigh
number, RaC ∼= 1708 [1, 2]. When the temperature differential at the horizontal walls TH − TC is
raised gradually, the buoyancy forces are intensified, and eventually outweigh the viscous forces.
This state of affairs is governed by Ra>RaC, and as a result the fluid circulation becomes stronger.
The fluid movement coupled with molecular heat conduction brings with it a second mode of heat
transport [1, 2]. This situation is connected to moderate-to-large values of the Ra numbers, which
are confined to the Ra sub-interval 1708<Ra<3.2× 105. Within this ample sub-interval, the fluid
possesses laminar motion and takes the form of 2-D regularly spaced counter-rotating roll cells of
square cross section. These cells are traditionally recognized as Bénard cells in honour of Bénard
[3] who first observed this singular phenomenon in 1900. Further increases in the temperature
differential at the horizontal walls TH−TC exceed the upper limit of Ra= 3.2× 105, carrying with
it 2-D roll cells that break apart and immediately form a new 3-D cells which appear hexagonal in
shape when viewed from above. Whenever Ra� 3.2× 105, the natural convective flow energizes
even further, the number of 3-D cells multiply, turn narrower and the flow becomes oscillatory
turbulent. Eventually, the 3-D cells disappear.

From the brief narration, it is apparent that the heat transport in a RB cavity responds to: (a)
molecular conduction for Ra<1708; (b) laminar natural convection for Ra>1708; and (c) turbulent
natural convection for Ra� 1708. A simple WEB literature search reveals a superabundance of
publications on thermal convection related to the standard RB cavity.

As expected, heat transfer enhancement in RB cavities turns out to be difficult because of the
low fluid velocities that are induced by gravitational flows. Owing to this adverse effect, it is of
fundamental and practical interest to explore schemes for augmenting heat transfer in RB cavities.
In this regard, Hitt and Campo [4] attached conductive fins to the bottom plate of a RB cavity
with encouraging Nu results. Thereby, the aim of the present paper is to explore the heat/flow
implications of inclining the upper cold plate of a standard RB cavity with a goal at increasing
heat transfer rates. Despite that the authors Lam et al. [5], Peric [6], Sadat and Salagnac [7], and
Moukalled and Acharya [8, 9] have tackled thermal convection in trapezoidal enclosures, none of
these works relate to the configuration under investigation in this study.

2. PROBLEM FORMULATION

A schematic diagram of the modified RB cavity for the case under study appears in Figure 1.
The cavity domain is bounded from below by a flat plate, from above by an inverted-V plate with
variable inclination angle, and from the sides by two vertical insulated boundaries. The horizontal
and vertical coordinates are x, y. The dimensions of the modified RB cavity in Figure 1 are stated
as follows: base L = 2H , maximum height H , and variable height of the insulated sidewalls d ′.
The fluid medium is air. The dimension perpendicular to the sketch plane is relatively long, so that
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Figure 1. Modified Rayleigh–Bénard cavity with a lower flat plate and an inverted-V upper plate.

the air circulation has 2-D motion. The airflow is governed by the 2-D unsteady coupled system
of mass, momentum, and energy conservation equations with the following restrictions: laminar
flow, constant thermophysical properties, Boussinesq approximation, and Newtonian fluid. These
equations are
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The velocity boundary conditions rest on the basic assumptions: (a) the solid boundaries are rigid
and impermeable; and (b) the air does not slip at the fluid/solid interfaces, i.e. u = v = 0. The
temperature boundary conditions imply prescribed TH = 313K at the bottom hot plate, prescribed
TC = 287K at the two upper symmetrically inclined cold plates, and null temperature gradient
�T/�x at the two bounding insulated sidewalls. The initial condition is set at TC.

3. NUMERICAL COMPUTATIONAL PROCEDURE

The computational domain is constructed coincident with the physical domain forming the modified
RB cavity. All computations were done for a fixed aspect ration of H/L = 2. The relative height
d = d ′/H of the insulated sidewalls is contained in the interval 0 (for an isosceles triangle) <d<1
(for a standard RB cavity). Representative Rayleigh numbers ranging from a low Ra= 103 to a
high 106 are employed to secure laminar conditions.

The computational domain has been constructed using quadrilateral elements. Moreover, the
regions near the solid surfaces (plates and sidewalls) are meshed with fine grids to resolve the high
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Table I. Sensitivity of the grid density in terms
of the mean Nusselt number for the case of

d = 0.125 and Ra= 106.

Grid size Nu

30 000 9.64
40 000 9.87
50 000 10.02
57 000 10.43
70 000 10.54

Figure 2. Portion of the computational grid showing the distribution of elements within the right corner
between the vertical sidewall and the inclined plate of the modified RB cavity with d = 0.25.

velocity and temperature gradients that normally occur there. First, for the subset of modified RB
cavities with 0�d�0.75, a total of 57 000 finite-volume quadrilateral elements are employed to
attain grid-independent solutions. Second, for the extreme standard RB cavity with d = 1, a total
of 20 000 quadrilateral elements were utilized. The process of mesh refinement is repeated pro-
gressively until insignificant velocity and temperature changes are guaranteed at all computational
domain locations. The numerical uncertainty of the two velocity components u and v should be
less than 2%, while the local heat flux q stays around 5%. The items in Table I indicate how the
mean Nusselt number converges with the sequential grid refinements for the case of d = 0.125 and
Ra= 106. For purposes of visualization, a portion of the computational grid corresponding to the
right corner of the modified RB cavity with d = 0.25 is shown in Figure 2.

To perform the numerical computations of the velocity and temperature fields u(x, y), v(x, y)
and T (x, y) satisfying the applicable velocity and temperature boundary conditions stated before,
the governing equations (1)–(4) are solved using the finite-volume method. In this context, the fully
implicit discretization approach was used for discretizing the transient equations on the grounds of
its superior stability. The QUICK scheme was used for the discretization of momentum and energy
conservation equations. A second-order body-force-weighted scheme was utilized in the pressure
discretization and the SIMPLE scheme was employed in the pressure–velocity coupling [10].
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Figure 3. Comparison between the numerical and experimental mean Nusselt numbers for the isosceles
triangular cavity: Case 1 (cavity heated from the top) and Case 2 (cavity heated from below).

Convergence of all numerical simulations was assessed in two stages: first, through the monitoring
of computed residuals for the mass, velocity, and energy conservation by setting its variations to
less than 10−6. Second, through the convergence of point and/or surface monitors for velocity,
temperature, and heat flux at selected locations in the computational domain.

Once the velocity and temperature fields u(x, y), v(x, y) and T (x, y) have accurately converged,
we proceeded to calculate the streamlines and isotherms to characterize the circulatory airflow.
Thereafter, the local heat flux distribution qw(x) was computed along the lower plate by applying
Fourier’s law to the temperature distribution T (x, 0), and then integrated over the entire surface.
This gives way to the total heat transfer rate:

qw =
∫
base qw(x) dx

L
(5)

From here, the mean convective coefficient in dimensionless form or the mean Nusselt number
was determined by

Nu= qw
TH − TC

(
H

k

)
(6)

where k the thermal conductivity of air is evaluated at the reference temperature Tr cited before.
In the course of the numerical computations, the validation of the numerical code was carefully

done for the limiting case with d = 0 related to the isosceles triangular cavity. The experimental
measurements by Flack [11] seemed to be the logical choice. In this work, two heating/cooling
conditions corresponding to an isosceles triangular cavity heated from above (Case 1) and heated
from below (Case 2) were assessed. Figure 3 illustrates the excellent parity between the collection
of experimental and numerical Nusselt numbers Nu varying with the Grashof number for Pr= 0.7.
From the plot on Figure 3, it may be inferred that Nu stays uniform around 4.63 in Case 1. The
invariance of Nu with Gr clearly indicates that the majority of the heat is transported by conduction.
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In contrast, for Case 2, the curve path exhibits a power law dependence of Nu with respect to
Gr; this is responsive to strong natural convection. Among all the Nu–Gr data points gathered for
the two contrasting cases regardless of the source, the maximum deviation detected is within a
tolerable 3.5% band.

4. DISCUSSION OF THE NUMERICAL RESULTS

Air motion was set up in the modified RB cavity by heating the bottom horizontal plate to a uniform
temperature TH and cooling the two symmetric upper inverted-V plates to a uniform temperature
TC. The inclination of the inverted-V plates was expressed by means of the relative heights d
of the insulated sidewalls varying from a minimum limit d = 0, to 0.125, 0.25, 0.5 ending at the
maximum limit d = 1 (standard RB cavity). The Prandtl number of air was set at 0.71, and the
Rayleigh number values were assigned inside the large interval extending between 103 and 106.
Naturally, the local quantities to be computed are the air velocity fields u(x, y), v(x, y) and the
companion temperature fields T (x, y). The latter was channelled through the global quantity of
interest, the mean heat transfer coefficient. The air velocities are provided in terms of adequate
streamlines, whereas the temperatures are reported in terms of isotherms. For all cases investigated,
we started the computations from rest at low Ra= 103 and use the resulting steady state to start
the computations at higher Rayleigh numbers.

In the case of an isosceles triangular cavity (d = 0) heated from below and evenly cooled from
above, it has been demonstrated experimentally by Holtzman et al. [12] that multiple steady-state
solutions can be obtained in the range of Rayleigh considered in the present work, i.e. 103�Ra�106.
Symmetrical steady-state solutions are observed at low Rayleigh numbers, which are characterized
by two counter-rotating cells. As Ra progressively increased, a transition to an asymmetrical steady
state occurs at a critical value of Rayleigh number. Multiple steady-state solutions can also be
obtained in the ranges of parameters considered in the present work. A special effort is made in
this regard to determine the existing ranges of each steady-state solution as well as the critical
values of Ra characterizing the transition from one solution to another.

4.1. Fluid flow

The collection of streamlines and isotherms related to a low Ra= 103 is presented in Figure 4. The
fluid system is placed slightly above the critical state, which corresponds to the onset of thermal
convection. The results are reported for the three RB cavities with d = 0.125, 0.5, and 1. The
steady-state patterns for the three geometries are characterized by two counter-rotating vortices.
It is observable that this solution is symmetric about the vertical mid-plane of the modified RB
cavity. The buoyant convective motion is oriented upwards in the central region (hot stream) and
downwards near the sidewalls (cold stream). The strength of the vortices rotation can be determined
by calculating the magnitude of the stream function gradient. The d = 0.125 cavity displays the
largest magnitude for the stream function gradient, while the rectangle (d = 1) displays the smallest.
Therefore, as expected the vortices strength and velocities reach highest values for d = 0.125 and
lowest values for the rectangle (d = 1). The isotherms specified the typical temperature distribution
that corresponds to the limit dictated by pure conduction. For the geometries with d<1, the
isotherms are parallel to the base plate in the lower region of the cavity but their shape is changing
and become parallel to the inclined plate when moving up towards the upper region of the cavity.
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Figure 4. Streamlines and isotherms for a fixed Ra= 103 and different relative
heights: (a) d = 0.125; (b) d = 0.5; and (c) d = 1.

In contrast, for the rectangle the isotherms are horizontal and parallel to the pair of active plates. As
demonstrated in Figure 5, the circulation patterns are radically changed for the cavities with d<1
and the symmetry between the two counter-rotating vortices disappeared when Ra increased to
106. Further, at this juncture, it is worth noting the presence of a pitchfork bifurcation in Figure 5.
This bifurcation occurs at a critical Rayleigh number, Ra1, which depends upon the height d of the
insulated walls. Secondary vortices appear at the corners of the cavity associated with d = 0.125
as evidenced in Figure 5(a). These new vortices push the main vortices towards the center and
contribute to intensify the heat transfer across the cavity. However, when increasing Ra from 103
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Figure 5. Streamlines and isotherms for a fixed Ra= 106 and different relative heights in a modified RB
cavity with: (a) d = 0.125; (b) d = 0.5; and (c) d = 1.

in the intermediate cavity with d = 0.5, one cell amplifies in size and moves from the corner
towards the center while the second cell remains in the corner but diminishes in size. Contrary to
the compartment exhibited by the first two geometries, the airflow stays symmetrical with respect
to the mid-plane for the rectangle. Essentially, the airflow exhibits the same two original vortices,
plus two small secondary vortices that surface up in the lower corners. In addition to the new
vortex locations, their strengths are also intensified as seen by the magnitude of the stream function
gradient. The effect of the enhanced vortex strengths can be elucidated in the temperature contours,
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which in fact become complex. The difference in the isotherm shapes highlights the importance
of buoyant convection over conduction at a particular Rayleigh number.

4.2. Transition

The buoyant air motion is steady for a wide range of Ra, but as Ra was gradually increased, the
symmetric (S) patterns disappear and a sub-critical pitchfork bifurcation is created at a critical
value of Rayleigh number, say Ra1. Above this Ra1 threshold the asymmetric (AS) patterns appear,
remaining steady for a wide range of Ra. This state of affairs prevails even if the initial conditions
imposed on the air are those of the symmetrical flow. Special effort has been devoted to determine
the critical Rayleigh number Ra1 characterizing the transition from the S steady-state solution to
an AS steady-state solution for different heights d of the insulated sidewalls. Tests were conducted
by increasing Ra, with very small steps when necessary (as low as �Ra= 10), to determine these
critical values. All transitions were determined with a precision such that �Ra<10 from the critical
values examined. The computed Ra1 results versus d may be conveniently viewed when plotting
them on a phase diagram that shows the existence ranges of each solution. The resulting diagram
is illustrated in Figure 6. The S-flow exists under the curved line, characterizing the variations of
Ra1 over a limited range of Ra and d . Meanwhile, the AS flow exists for a wide domain of the
diagram, which corresponds to high Rayleigh numbers.

At this stage, we express interest in measuring the degree of asymmetry in the numerical-
determined temperature solutions. To accomplish this objective the following integral I is evaluated

I =
∫ [T (x, y) − T (−x, y)]2 dx dy

4
∫ [T (x, y)]2 dx dy (7)

over the whole geometry: from this formal definition, it is clear that the S steady-state solu-
tion satisfies I = 0, but the AS steady-state solution has a nonzero I . The quantity I has been

Figure 6. Phase diagram relative to the existence of the two solutions for different
combinations of Ra and d in a modified RB cavity.
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Figure 7. Evolution of the degree of symmetry I with the Rayleigh number
for a modified RB cavity with d = 0.125.

evaluated in the case of d = 0.125 for different Ra ranging from 103 up to 5× 105. The outcome
of these calculations is displayed in Figure 7 when decreasing Ra from 5× 105 to a final 103. It
may be seen that I decay monotonically with Ra as the main plume approaches the mid-plane of
the cavity. This singular behavior continues steadily until Ra reaches the critical value Ra1 where
I becomes zero.

4.3. Heat transfer

Displayed in Figure 8 are local heat flux distributions for Ra= 105. The local heat flux results
correspond to the three configurations: d = 0, 0.125, and 0.75. For the isosceles triangle (d = 0)
qw begins with a large value at the point where the discontinuity X = 0 occurs. As X grows, qw
possesses a positive skewed concave U-shape with respect to the abscissa X . In the sub interval
0.1�X�0.9 qw stays almost constant showing subtle variations characterized by the presence of
peaks. Each peak is the direct result of an upward air stream between two rotating vortices. The
magnitude of each peak is proportional to the strength of the corresponding vortex. Approaching
the other X = 1 discontinuity, qw magnifies quickly to reach high values indicating that heat transfer
by conduction has happened in this region. The effect of the insulated sidewalls on the local heat
flux can be seen on the first qw curve representative of the d = 0.125 cavity. The value of qw at
the extremes X = 0 and 1 descends 10-fold from 1500 to 150Wm−2. Besides the values of qw
at the discontinuity, qw curve exhibits the same behavior as noticed by qw corresponding to the
isosceles cavity (d = 0). In addition, it is worth mentioning here that the presence of the small,
insulated sidewalls provides a huge heat transfer enhancement in the modified RB cavity.

The mean Nusselt number Nu as a function of the log Ra and parameterized by the relative
height d of the insulated sidewalls is plotted in Figure 9. Regarding the lowermost Nu curve
representative of the rectangular cavity (d = 1), this particular curve constitutes the standard RB
cavity. This is taken here as the benchmark solution for comparison purposes. The response of
Nu to changes in Ra may be viewed as the intersection of two straight lines, one horizontal
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Figure 8. Distribution of the local heat flux qw along the hot bottom plate for a fixed Ra= 105

and various heights d in a modified RB cavity.

Figure 9. Variation of the mean Nusselt number Nu with the Rayleigh number Ra and the relative height
d of the insulated sidewalls in several modified RB cavities.

and the other with a positive slope. The point where the curves start losing their horizontal path
can be viewed as the critical value of RaC, which is associated with the relative height d . The
significance of the critical value is important because it serves to identify the onset of natural
convection. Basically, at small values of Ra below the critical value, there is little augmentation
in the heat transfer over that due to conduction. The conduction regime is described by a linear
temperature variation in the central region of the geometry. As Ra increases, the airflow regimes
include conduction, transition, and boundary layer; this results in a significant augmentation in
convection heat transfer. Upon reduction of the insulated sidewalls height to d = 0.75, the shape
of the Nu curve straighten up and is shifted up slightly by one unit at a low Ra= 5× 103 and two
units at a high Ra= 106. When the height of the insulated sidewalls is changed markedly from
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d = 0.75 to 0.125, each different height gives rise to Nu curves that are nearly parallel. For this
geometry sub-group forming modified RB cavities, remarkable heat transfer enhancements were
observed when compared against the standard RB cavity with d = 1. The largest heat transfer
enhancement takes place between the standard RB cavity with d = 1 and the modified RB cavity
with d = 0. First, an increment of the order of �Nu= 8 units, equivalent to 700% is observed for a
low Ra= 103. Second, for a high Ra= 6× 105, the increment ascends to �Nu= 8 units, equivalent
to 145%.

A nonlinear multiple regression analysis was carried out with the numerical-generated data for
the mean Nusselt number for suitable combinations of Rayleigh numbers and the relative height of
insulated sidewalls d . At the end, it was decided to recommend the predictive correlation equation

Nu= 8.4198 − 78.1417d + 350.5906d2 − 741.9289d3 + 726.0692d4 − 264.2173d5

+ 2.7031× 10−5Ra − 7.7931× 10−11Ra2 + 1.1294× 10−16Ra3 − 5.4795× 10−23Ra4

+ 2.4447× 10−4d ×Ra − 2.0125× 10−9d ×Ra2 + 2.0746× 10−15d ×Ra3

− 3.0193× 10−22d ×Ra4 − 8.4759× 10−5d2 ×Ra + 3.7320× 10−10d2 ×Ra2

− 6.6865× 10−16d2 ×Ra3 + 3.7386× 10−22d2 ×Ra4 (8)

The nearly perfect R2 value of 99.7% means that 99.7% of the variability in Nu caused by changes
in d and Ra can be explained by the 18 predictor variables in Equation (8). The range of validity of
Equation (8) is 0�d�1 and 103�Ra�106. The maximum error that results between the numerical
and the predicted Nu is less than 10%.

5. CONCLUDING REMARKS

Laminar heat transfer and fluid flow of air inside a modified Rayleigh–Bénard (RB) cavity is
investigated. The cavity domain is bounded from below by a flat plate and from above by an
inverted-V plate with variable inclination angles. Flow patterns of the modified RB cavity are
found to be symmetrical at low Ra, but as Ra was gradually increased above a critical value Ra1,
a transition to asymmetrical patterns occurs. The critical value increases with the height d of the
insulated sidewalls. Local and mean heat fluxes throughout the active walls of the cavity are highly
affected by the height d of the sidewalls and this effect is intensified as d decreases. In fact, when
d decreases from 0.125 to 0, increment in terms of the mean Nusselt number of up to 63.4% at
low Rayleigh number and 33.3% at high Rayleigh number was obtained. These two increment
values go up to 700 and 145%, respectively, when d is reduced from 1 to 0. A generalized
correlation equation for the mean Nusselt number is proposed. This correlation equation allows
accurate predictions for the entire ranges of the Rayleigh number and the dimensionless height of
the vertical sidewalls considered.

NOMENCLATURE

cp specific isobaric heat capacity (J kg−1 K−1)

d relative height of insulated sidewalls= d ′/H
d ′ height of insulated sidewalls (m)
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g acceleration of gravity (ms−2)

h mean convective coefficient (WK−1 m−2)

H maximum height of RB cavity (m)
k thermal conductivity (WK−1 m−1)

L base of the RB cavity (m)
Nu mean Nusselt number= hH/k
p pressure (Pa)
qw wall heat flux (Wm−2)

qw mean wall heat flux (Wm−2)

Ra Rayleigh number= g�(TH − TC)H3/��
T temperature (K)
TC cold plate temperature (K)
TH hot plate temperature (K)
Tr reference temperature= (TH + TC)/2
u, v velocities in the x- and y-directions (ms−1)

x, y horizontal and vertical coordinates (m)
X, Y dimensionless x, y; x/L , y/L

Greek letters

� thermal diffusivity (m2 s−1)

� volumetric thermal expansion coefficient (K−1)

� dynamic viscosity (kgm−1 s−1)

� kinematic viscosity (m2 s−1)

� density (kgm−3)

� stream function u = ��/�y, v =−��/�x
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